Publications

    Journal Papers
  1. Igor Tominec, Murtazo Nazarov, Elisabeth Larsson. Stability estimates for radial basis function methods applied to linear scalar conservation laws.
    (2025); Applied Mathematics and Computation. 485: 129020 [  DOI  | URL  | PDF ]

  2. Tuan Anh Dao, Lukas Lundgren, Ignacio Tomas. Viscous regularization of the MHD equations.
    (2024); SIAM Journal on Applied Mathematics. 84 (4): 1439-1459 [  DOI  | URL  | PDF ]

  3. Lukas Lundgren, Murtazo Nazarov. A fully conservative and shift-invariant formulation for Galerkin discretizations of incompressible variable density flow.
    (2024); Journal of Computational Physics. 510: 113086 [  DOI  | URL  | PDF ]

  4. Tuan Anh Dao, Murtazo Nazarov, Ignacio Tomas. A structure preserving numerical method for the ideal compressible MHD system.
    (2024); Journal of Computational Physics. 508: 113009 [  DOI  | URL  | PDF ]

  5. Guermond J.-L., Nazarov M., Popov B. Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space
    (2024); Computer Methods in Applied Mechanics and Engineering 418, Part A: 116470 [  DOI  | URL  | PDF  ]

  6. Lukas Lundgren, Murtazo Nazarov. A high-order residual-based viscosity finite element method for incompressible variable density flow.
    (2024); Journal of Computational Physics. 497: 112608 [  DOI  | URL  | PDF ]

  7. Lena Leitenmaier, Murtazo Nazarov. A finite element based Heterogeneous Multiscale Method for the Landau-Lifshitz equation.
    (2023); Journal of Computational Physics. 486: 112112 [  DOI  | URL  | PDF ]

  8. Lukas Lundgren, Murtazo Nazarov. A high-order artificial compressibility method based on Taylor series time-stepping for variable density flow.
    (2023); Journal of Computational and Applied Mathematics. 421: 114846 [  DOI  | URL  | PDF ]

  9. Igor Tominec, Murtazo Nazarov. Residual viscosity stabilized RBF-FD methods for solving nonlinear conservation laws.
    (2023); Journal of Scientific Computing. 94(1): 714 [  DOI  | URL  | PDF ]

  10. Tuan Anh Dao, Murtazo Nazarov. A high-order residual-based viscosity finite element method for the ideal MHD equations.
    (2022); Journal of Scientific Computing. 92(3): 77 [  DOI  | URL  | PDF ]

  11. Tuan Anh Dao, Murtazo Nazarov. Monolithic parabolic regularization of the MHD equations and entropy principles.
    (2022); Computer Methods in Applied Mechanics and Engineering. 398: 115269 [  DOI  | URL  | PDF ]

  12. Thibault Bouderlique, Julian Petersen, Louis Faure, Daniel Abed-Navandi, Anass Bouchnita, Benjamin Mueller, Murtazo Nazarov, Lukas Englmaier, Marketa Tesarova, Pedro R Frade, Tomas Zikmund, Till Koehne, Jozef Kaiser, Kaj Fried, Christian Wild, Olga Pantos, Andreas Hellander, John Bythell, Igor Adameyko. Surface flow for colonial integration in reef-building corals.
    (2022); Current Biology. 32(12): 2596-2609.e7 [  DOI  | URL  | PDF ]

  13. B Weber, G Kreiss, M Nazarov. Stability analysis of high order methods for the wave equation.
    (2022); Journal of Computational and Applied Mathematics. 404: 113900 [  DOI  | URL  | PDF ]

  14. V Stiernström, L Lundgren, M Nazarov, K Mattsson. A residual-based artificial viscosity finite difference method for scalar conservation laws.
    (2021); Journal of Computational Physics. 430: 110100 [  DOI  | URL  | PDF ]

  15. TA Dao, K Mattsson, M Nazarov. Energy stable and accurate coupling of finite element methods and finite difference methods.
    (2021); Journal of Computational Physics. 449: 110791 [  DOI  | URL  | PDF ]

  16. A Bonito and M Nazarov. Numerical Simulations of Surface Quasi-Geostrophic Flows on Periodic Domains.
    (2021); SIAM Journal on Scientific Computing. 43(2): B405-B430 [  DOI  | URL  | PDF ]

  17. Muhamadiev E. and Nazarov M. Regularity of almost periodic solutions of Poisson's equation.
    (2020); Ufa Mathematical Journal. 12(2): 96-106 [  DOI  | URL  | PDF ]

  18. Lu L., Nazarov M., Fischer P. Nonlinear artificial viscosity for spectral element methods.
    (2019); Comptes Rendus Mathematique 357(7): 646-654 [  DOI  | bib  | URL  | PDF ]

  19. Guermond J.-L., Nazarov M., Popov B., Tomas I. Second-order invariant domain preserving approximation of the Euler equations using convex limiting.
    (2018); SIAM J. Sci. Computing 40(5): A3211-A3239 [  DOI  | bib  | URL  | PDF  | Suplementary materials ]

  20. Nazarov M., Larcher A.. Numerical investigation of a viscous regularization of the Euler equations by Entropy Viscosity.
    (2017); Computer Methods in Applied Mechanics and Engineering 317: 128-152 [  DOI  | bib  | URL  | PDF ]

  21. Marras S., Nazarov M., Francis X. Giraldo. Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES.
    (2015); Journal of Computational Physics. 301: 77-101 [ DOI  | bib  | URL  | PDF ]

  22. Buerg M. and Nazarov M. Goal-oriented adaptive finite element methods for elliptic problems revisited.
    (2015); Journal of Computational and Applied Mathematics. 287: 125-147 [  DOI  | bib  | URL  | PDF ]

  23. Muhamadiev E.M. and Nazarov M. Optimal bounds for a Lagrange interpolation inequality for piecewise linear continuous finite elements in two space dimensions.
    (2015); Journal of Mathematical Analysis and Applications. 423(2): 940 - 955. [ DOI  | bib  | URL  | PDF ]

  24. Guermond J.-L., Nazarov M., Popov B. and Yong Yang. A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations.
    (2014); SIAM Journal of Numerical Analysis. 52(4): 2163-2182. [ DOI  | URL  | bib  | PDF ]

  25. Guermond J.-L. and Nazarov M. A maximum-principle preserving $C^0$ finite element method for scalar conservation equations.
    (2014); Computer Methods in Applied Mechanics and Engineering, 272: 198-213. [ DOI  | URL  | bib  | PDF ]

  26. Nazarov M. Convergence of a residual based artificial viscosity finite element method.
    (2013); Computers & Mathematics with Applications, 65(4): 616-626. [ DOI  | URL  | bib  | PDF ]

  27. Nazarov M, Hoffman J. Residual based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods.
    (2013); Int. J. Num. Methods Fluids, 71(3): 339-357. [ DOI  | URL  | bib  | PDF ]

  28. Nazarov M, Hoffman J. On the stability of the dual problem for high reynolds number flow past a circular cylinder in two dimensions.
    (2012); SIAM J. Sci. Comput., 34(4), A1905-A1924. [ DOI  | URL  | bib  | PDF ]

  29. Hoffman J, Jansson J, de Abreu RV, Degirmenci C, Jansson N, Muller K, Nazarov M, Spuhler J. Unicorn: parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry.
    (2012); Computers & Fluids, doi:10.1016/j.compfluid.2012.02.003. DOI  | URL  | bib  | PDF ]

  30. Hoffman J, Jansson J, Degirmenci C, Jansson N, Nazarov M. Unicorn: a unified continuum mechanics solver.
    (2011); Automated solution of differential equations by the finite element method, (Eds. A.Logg, K-A.Mardal, G.N.Wells), Volume 84 of Lecture Notes in Computational Science and Engineering, Springer, Chapter 18. [ bib ]

  31. Jansson N, Hoffman J, Nazarov M. Adaptive simulation of turbulent flow past a full car model,
    (2011); State of the Practice Reports, SC'11, ACM: New York, NY, USA, 20:1-20:8. [ DOI | URL  | bib  | PDF ]

  32. Nazarov M, Hoffman J. An adaptive finite element method for inviscid compressible flow.
    (2010); Int. J. Numer. Meth. Fluids, 64(10-12): 1102-1128. [ DOI | URL  | bib  | PDF ]

  33. Conference proceedings
  34. Nazarov M. A stabilized finite element method for the Surface-Quasi-Geostrophic equation
    (2019); Proc. 10th International Scientific-Technical Conference, INFOS-2019 VSTU, Russia. p: 8-11 [ bib ]

  35. Nazarov M. Smoothing of a nonlinear viscosity.
    (2018); International Conference in Mathematics to honor of Prof. Ilolov M. Tajik State National University, Tajikistan. [ bib ]

  36. Muhamadiev E. and Nazarov M. On almost periodic solutions of the Poisson's equation.
    (2017); International math conference in theory of functions, Bashkir State University, Ufa, Russia [ bib ]

  37. Nazarov M. Convergence of a goal-oriented adaptive algorithm for elliptic problems.
    (2015); International Conference in Mathematics to honor of Prof. Stecenko, Tajik State National University, Tajikistan [ bib ]

  38. Muhamadiev E. and Nazarov M. Notes on the estimation of an interpolation inequality for piecewise linear finite element approximations.
    (2014); International Conference in Mathematics and its Applications, Khujand State University, Tajikistan [ bib ]

  39. Nazarov M. Adaptive DNS/LES for two dimensional supersonic flow around a wedge.
    (2009); Proc. 5th International Scientific-Technical Conference, VSTU, Russia. [ bib ]

  40. Nazarov M. About the behavior of solutions of some classes of differential equations in 2d around critical points.
    (2004); International Conference on Mathematics: Actual problems of mathematics and its applications, TSU. Khujand, Tajikistan. [ bib ]

  41. Nazarov M. On resolvability of some classes of boundary value problems.
    (2004); International Conference on Applied Mathematics, Tajik State National University, Dushanbe, Tajikistan. [ bib ]

  42. Popular science presentations
  43. Nazarov M. Contribution to a special exhibition on computer simulations.
    (2017); Make software, change the world! Computer History Museum, Monterey, California, USA, [ URL ]

  44. Thesis and dissertations
  45. Nazarov M. Adaptive algorithms and high order stabilization for finite element computation of turbulent compressible flow.
    (2011); PhD thesis, KTH, Sweden. [ URL  | bib  | PDF ]

  46. Nazarov M. An adaptive finite element method for the compressible Euler equations.
    (2009); Licenciate thesis, No. 2009:13 in Trita-CSC-A, KTH, Sweden. [ URL  | bib  | PDF ]

  47. Nazarov M. Phase-field simulations.
    (2006); Master of Science thesis, Technical Report 2006:12, KTH, Sweden. [ bib  | PDF ]

  48. Nazarov M. The theorem of Beer-Hausdorff and it's applications,
    (2002); Master of Science thesis, KhSU, Tajikistan. [ bib ]

  49. Technical reports
  50. Nazarov M, Guermond J.-L., Popov B. A posteriori error estimation for the compressible Euler equations using entropy viscosity,
    (2011); Technical Report 4017, KTH, NA). [ bib ]

  51. Guermond J.-L., Nazarov M, Popov B. Implementation of the entropy viscosity method.
    (2011); Technical Report 4015, KTH, Numerical Analysis, NA. [ bib ]

  52. Hoffman J., Johnson C. and Nazarov M. Computational Foundation of Thermodynamics.
    (2008);